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Abstract. Cellular automata, which are realized by dynamics of several kinds of balls in an
infinite array of boxes, are investigated. They show soliton patterns even in the case when each
box has arbitrary capacity. The analytical expression for the soliton patterns are obtained using
ultradiscretization of the nonautonomous discrete KP equation.

1. Introduction

Cellular automata (CAs) serve as simple models for complex phenomena such as pattern
formation, chaos and fractals [1]. They also exhibit coherent structures as is seen in the game
of life [2]. Patterns which behave like solitons are also observed and discussed in several
CA systems [3-5]. About a decade ago, one of the authors (DT) and Satsuma proposed a
1(space) +1(time) dimensional CA in which all patterns look Bkditonsanalogous to that

of the soliton solutions in nonlinear partial differential equations [6]. The CA takes a value of
either zero or one. The rule to determine the value of the CA at positéond timer + 1, x!*1,

is given as

1 if x’=0 and Yt x> Y0t xit

t+l= n'=—oo0 *n’ n'=—o0 *n’ ) (1)

" 0 otherwise

Here we assume that the number of ‘1’ is finite, that is, we take,lim, x;, = O as the
boundary condition. An example of soliton patterns is shown in figure 1.

Soon after this proposal of the CA, DT extended it to so-called box and ball systems
(BBSs) [7]. The idea is to considef, as the number of balls in theh box at timer. Then
the CAis represented as a system with an infinite array of boxes each of which is either empty
or contains a ball. The evolution rule fronto ¢ + 1 is described as

(1) Move every ball only once.

(2) Move the leftmost ball to the nearest right empty box.

(3) Move the leftmost ball among the rest to its nearest right empty box.
(4) Repeat this procedure until all of the balls are moved.
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Figure 1. Two-soliton interactions of the soliton CA.  Figure 2. BBS corresponding to figure 1.
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Figure 3. Two-soliton interaction of an extended BB6= 2 andM = 3.

We can easily see that this rule is equivalent to that of the original CA. Figure 2 shows the
BBS corresponding to figure 1.

With this interpretation, we can introduce two extra freedoms: capacity of boxes and
species of the ball. We suppose that the capacity of the baxand there aré/ kinds of
balls which are indexed by integers2l ..., M. Then, the natural rule fromto ¢ + 1 for the
dynamics of the BBS would be

(1) Move every ball only once.

(2) Move the leftmost ball with index 1 to the nearest right box with space, i.e., to the nearest
right box which contains less thdnballs.

(3) Move the leftmost ball with index 1 among the rest to its nearest right box with space.

(4) Repeat this procedure until all of the balls with index 1 are moved.

(5) Do the same procedure (2)—(4) for the balls with index 2.

(6) Repeat this procedure successively until all of the balls are moved.

Surprisingly, the patterns of the BBSs also behave like solitons [7]. We show an example in
figure 3.

Several years ago, the authors and Satsuma found a direct link between the BBS (1) and
the soliton equations [9]. They showed a method by which CAs are obtained from continuous
equations. This method is based on limiting procedures and is called ultra-discretization
(UD) [10]t. Inthis paper, we will investigate the BBS, allowing that the capacities of the boxes

T This name was given by B Grammaticos.



Box and ball system and ultradiscrete nonautonomous KP equation 609

differ in position, in terms of UD of the nonautonomous discrete KP (NDKP) equation [11,12].
The expressions of the soliton patterns are given through UD of the soliton solutions of the
NDKP equation.

2. The NDKP equation

In the theory of KP hierarchy (Sato theory), the generating formula for a series of equations
of the hierarchy is given by [13, 14]

O R E

wheret = (11, 1,13,...) denotes an infinite number of independent variablg%,) =
(1/x,1/(20%), 1/(323), ...), and&(t, 1) = > 72112/, One of the main results in the Sato
theory is that a function satisfies equation (2) if and only if it corresponds G A,-orbit of

the fermion vacuum (a highest weight vector in basic representatiGiLgf). Its coordinates

are given through boson—fermion correspondence, and we can obtain the explicit expression
of functionz. From equation (2), we have the so-called Fay identity:for

o-on e (o) () o))
() () () ()0 o

Noticing that this identity resembles the discrete analogue of generalized Toda equation
proposed by Hirota [15], Miwa found transformations which map the generating formula
to discrete bilinear equations [16]. For example, by setting te(2) + me(3) + ne(?) and

(¢, m, n) = t(t), we have the discrete KP equation (Hirota—Miwa equation), which produces
many important discrete integrable nonlinear equations [15]. The NDKP equation is obtained
from the Fay identity by setting

4 1 m 1 n 1
=2 () e () e ()

where

k k'=1
Z =10 k=0
k' 0
- k< -1
k'=k+1

Then,z (¢, m, n) = (t) satisfies
by —c)t =1 mntd,m—1n—1+(c, —atd,m—1Ln)t(—-1Lmn—1

+@ag —by)t,m,n -t -1, m—1n)=0. (4)
This equation is the NDKP equation. Taking= 0, b,, = 1, ¢, = 1+4,, equation (4) turns
into
St =1 mn)t,m—-—1n—1D+A+5)t,m—Ln)yt(d—1Lmn—1)

-1, m,n—1Dt(—-1,m—1,n) =0. (5)
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The N-soliton solution to equation (5) is given by [11,17]

T(t) = (vadg(?)|vaq (6)
N
g®) = [ [ + oy (pi, YY" (@i 1)) 7
k=1
wherewy (k =1,2,..., N) are complex constants,

vp. )y =p'A-p) " [[AQ+8y — v (p)

g =q"A— " [[A+8y —)v* (@)

with

n n'=1
1_[ Xy,=11 n=20
w 0
[T x.* n< -1
n'=n+l

andy (p), ¥*(q) are fermionic field operators which satisfy

1
(vady (p) V¥ (p2), - - - ¥ (P )Y (g )V (gr-1). - .., ¥ (g1 IVag = det( ) :
Pi —4; /1« j<r

In order to relate the NDKP equation to the BBS, we impose a constramtfom, n):
t,m,n)=t —M,m—1n). (8)
Denotinge = t(s — 1, m = 0, n), equation (5) turns into
(L+8,)0, 45001 — 0eit oy — 8207 0yt = 0. ()

The N-soliton solution (7) is also a solution to equation (9) if it holds that

() (5) - o

fork =1,2,..., N. It should be noted that, for a given, there areM ¢, s which satisfy
equation (10) ang; # px. We use this fact to construct explicit solutions to the BBS.

3. BBS as UD limit of the NDKP equation

We consider an infinite array of boxes in a line. The capacity ofithe(—c0c < n < )
box is denoted by,, which is a positive integer. We suppose that thereMireinds of balls
distinguishable by an integer indgx(1 < j < M). The rule for time evolution of this BBS
is the same as that given in section 1.

If u!, ; denotes the number of balls with indgxt timer in thenth box, the evolution rule
givenin the introduction is described as follows:

n—1 n—1 j—1 M
,”_mm[ Z s TN Zu,” Z”nx’} (11)

n'=—oo '=—00 ’
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Figure 4. Two-soliton interaction of BBS with spatial dependence of box capacity.

We introduce a dependent varialg (s = Mt + j) as

n

M o] M
s yMi+j . t t
Y, =7, = E ( E Uy o+ E E un,’j,).
J'=Jj

n'=—00 t'=t+1j'=1
From equation (11) and noticing the relation:
o 1 s s 1 s
Uy ;= =Yy Y YT = Y i
we have

vy Yy =maxyy + vt vty M 6, (12)

The form of equation (12) seems to suggest some connections of the BBS with the NDKP
equation (9). Infact, equation (12) is obtained from equation (9) by the limiting procedure: UD.
To see this, we introduce a small positive paramet&ve puts, = exp[—6,/¢]in equation (9).

Then a solution to equation (9) generically depends on the parasnetér= ¢/ (¢). Noticing
the identity

Iimoe log(exp[A/e] + exp[B/e]) = max[A, B] for A,BeR

if the limit lim . .o £ log o () = Y* exists, it is obvious that® = Y* satisfies equation (12).
Thus, once we find one parametey family of solutionsec} (¢), we can obtain a solution to

the BBS. UD is this kind of method by which we can obtain a CA and its solutions at the same
time through limiting procedures. Since the NDKP equation is essentially equivalent to the
generating formula of KP hierarchy, we may regard the BBSs as a realization of ultra-discrete
limit of KP hierarchy.

4. N-soliton solutions to the BBS

In this section, we construct explicit soliton solutions to the BBS with the aid of solutions to
the NDKP equation.
First we consider the one-soliton solution. The one-soliton solution to the BBS is shown
to have the form:
J n
YN = max[o, Ko—tL — ZE,- + Z min[6,, L]] (13)
i=1 n'
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whereL is the length of soliton which corresponds to the number of all balls in the soliton,
Ko is an integer which is related to the phase of soliton, gnl = 1,2, ..., M) are the
non-negative integers which correspond to the numbéhdfalls in the soliton. Thus it holds
thaty", ¢; = L. We shall give some details of its derivation, because multi-soliton solutions
are obtained with similar arguments. To obtain (13), we t@kgin (7) as

M-1

gt) = []@+c@)v(p. Y (ge. b)) (14)
=0

=1+y(p.)¢*(p. 1) (15)
M-1

¢*(p. 1) = > crlg) V™ (ge. t) (16)
¢=0

whereg, (¢ =0,1,..., M — 1) are the roots of algebraic equation
M _ _ M _

b M Y (17)

xX—=p

for a given real numbep (M/(M +1) < p < 1), andcy(p) (0 < £ < M — 1) are complex
coefficients which will be determined later. Since equation (17) has one real positive root
except forp, we assume thay is positive and we put = go/p. Thenp andgo satisfy

1—yM
P=1_ w1 (18)
1—y

1-p=y" <1_—]/M+l) (19)
1—yM

qo =Y <1——VM+1) . (20)

Thet-functiones] (= (¢)) is given from equation (6) as
M-1 s n
¢ 1 qe 1_q£/(1+8n’)

=1+ ) (_> (—) 21

KZ(‘: e \ b H 1—p/@A+6y) 1)

We introduce a small positive parameteand puty = exp[—L/(Me)] with an integerL. We
also put

No
G(p) = ;‘f”;{ (1—g0™ [~ qe/@+8,)) (22)
M-1 9 s ’
Xp($) =Y &lp) (—) (23)
=0 p

whereTy = Tyh(e) andNg = No(¢) are positive integers which satisfy ~ No ~ 1/¢. Hence,
Iim£_>+0 To = |ims_>+0 No = +o0.

We determinec,(p) (¢ = 0,1,2,..., M — 1) by the following assumption fog,(;)
(j=0,1,2,...,M—1):

Xp (0) = Xo
xp(1) = N1y"x,(0)
xp(2) = N2y x, (D) (24)

Xp(M —1) = Nyy_1y"1x,(M — 2).
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Here xq is a positive number which is related to the initial phase of solifos, exp[—1/¢],
£; andN; = N;(e) (j = 1,2,..., M — 1) are non-negative integers and positive numbers
respectively. They are also supposed to satisfy

M-1
ty=L—-) €;>0
j=1

: 25
IimoslogNj(s)zo (25)

Nyt < e
for a sufficiently large positive intege¥*. From (24) and (25)%,(p) ¢ =0,1,..., M — 1)
are uniquely determined by the equation:

1 1 - 1 co(p) xp(0)

99 g du- c1(p) pxp(D)

490 91 du- c(p) | = P*xp(2) ) (26)
@'t gt gt \éwa(p) pM=Ly, (M — 1)

Note that the determinant of thié x M matrix in the left-hand side of (26) is the Vandermond

determinant][,; ;<) _1(q; — i) # 0.
Since

M-1 9 s+M
Xp(s + M) =" E(p) (—)
=0 p
M-1 s 1_
=3 ap) (ﬂ) P )
=0 p 1- qe

00 M-1 s+
=1-p)Y_p' Y &) (%)

i=0 =0
0 .
=A=p) Y papls +i)
i=0
we have

M-1 00
X+ M) =Y <Z(1 — p)“lpmge(i)>p"xp(s +i) @7)

i=0 \ =0
wherego(i) = 1,g1(1) =i +1land

=) M+i k1 kg1

=Y > )1

ki=(—1)M ko=(t—2)M k=0
(i+1)
oo

1
(EM+i+j+1)
j=1
for ¢ > 2. The ratiogy+1(i)/g¢(i) (¢ > 1) is calculated as

gZ+1(i>_(z+1>(M+1>+iﬁl+ M
ge@) e+1 AT em+ivi+1

4
<(M+1)(1+%'> < (M + e
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Hence, if it holds thatl — p)p™ < (M + 1)~1e 1, we obtain
M-1

0< 16+ M) <A p) Y (L4 + D oD )X(s+i) (28)
! h i—0 1-A-ppMM+De)”” '

Thus, from (28) and (25), we find that
xp(i) = ¢ Xp(i +1) for Vi
Xxp(i) = CexplL/elx, (i + M) for vi and 3C > 0. (29)
Now we evaluate the functionso; and take its UD limit. From equation (21), we have

Mi+j n » -1 No q; -1
M+ _ T ;
*j 1+Zc](p)< ) (1—g;) 05[(1_14.5”,) H (1_1+5,,r>

j=0 n'=n+l
1 p> r
L—gp—
(P) (1— q; !

M-

Ze

L P\ a \*
-) L0 - 0

n'=n+l

For a moment, we assume thwaandr are in the regionjn| < Ng and|z] < Tp. Noticing that

No -
—To—t _ q]
ama e 01 (-2 =e(mere 3 () o

n’'=n+1 n'=n+l
2 3
v (5) o (1) o3
p p p
we get
a,f‘“+j=1+(1—p)’]_[< T+s, ) Za,xp(J +i) (31)

whereap = 1 anda;+1/a; ~ e~L. From (29), we have & Yociaixp(j+i) < xp(j) for
sufficiently smalle. Puttingxo = exp[Ko/¢] and using the relations

Iimoslog(l —p)=—

and
» \!
lim & log <1 -1 +5n’) =min[L, 6,]
we obtain
lim slogoM'+’ = max[o Ko—tL — ZE +Zmln[9n,L]] (32)
i=1 n

Since lim_ +o No(e) = lim._ +o To(e) = +o0, these results are valid for any finiteand:.
Thus we have shown that (13) is a solution to equation (12).

It may be interesting to see hawlogo;(e) = f’;(s) approaches to the right-hand side
0f (32). We defingi; (s) 1= —V;*L+7;+7:*1— Vs _,. Bydefinition, we hava,”™ (+0) = u, .
Figure 5 showsi: (¢) given from (31) for various values ef They show fairly localizing
behaviours and do not look like typical soliton solutions in 1 + 1 dimensions. In fact, as is seen
from the construction (see (14)), the one-soliton solutions of this system should be regarded
as degenerat¥ -soliton solutions.
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Figure 5. One-soliton solution to equation (12)a)(y = exp[-1/¢] = 1.0; (b) y = 0.01;
(c) y = +0(¢ = +0); (d) corresponding time evolution of the BBS.

Furthermore, in the limip — 1 — 0, we haveg, — J exp[2r+/—1¢/M] and x,(¢)
becomedgth Fourier component of a functian, (s) = y~ o whichis a periodic function
with respect tas = Mt + j with period M. Hence, in the UD limit, we can construct any
shape of periodic function with peridd by suitably choosing ,(j)(0 < j < M —1)in(24),
though it is no longer expressed as a solution of a BBS. For finiteese type of solutions
exhibit solitonical behaviours with complicated inner structures.

We turn to the construction of multi-soliton solutions of the BBS. From the above
arguments, we see that the field operatgi®p) and ¢*(p) are essentially determined by
L, t;(j=12, ..., M) andKy. Therefore we denote these operators by

v(p) =y (L :e) ¢*(p) = ¢"(L; {¢;}; Ko @ &). (33)
For two-soliton solutions, we take

g@t) = L+ (p1, )¢ (p1, 1) (L + ¥ (p2, @™ (p2, 1)) (34)
where
Yip) =y ) ¢rp) =" (VLK o) (=12, (35)
We also assumé® > L@ and¢ > ¢'? (j =1,2,..., M). As we shall see below, the

latter condition turns out to be a natural constraint for soliton solutions. Using notation as
above, we have

o1 = (vad(1 + ¥ (p1, )" (p1, ) (L + Y (p2, )™ (p2. 1)) Ivag
= 1+(vady (p1, )¢"(p1. t)vag + (vady (pz, )¢ (p2, t)lvag
+vady (p1, 9" (p1, )Y (p2, )" (p2, t)|vag. (36)
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The second and third terms are calculated in the same way as above. The fourth term is
calculated as

(vady (p1, t)¢™ (p1, )Y (p2, )™ (p2, t)|vac

== (p1— p2@? — g\
= > > &(pvéi(p2) > s
7=0 j=0 (pr—4q;)(p2—q;")
(i) J t
q; 1-p i)\ —
i=12 \ Pi 1-g;
n b\l e q? -1
1- d 1- . 37
XU( 1+8n’> n’1=_n[+1< 1+5n’) ( )
We definey,, (s) by
M-1 q(i) s
Xp () =D &p) [T (i=12) (38)
=0 pi
and suppose
Xp (0) = x5
i @)
Xp (1) = Ny x,,(0)

DL
X (2) = N'y% (D) (39)

; 0)

Xp (M = 1) = Ny 1525, (M —2)

where positive numbers/{” satisfy the similar inequalities to (25). Note thgt > ¢?

(j=1.2..... M) and itis always possible to choosg” such that
InG+D G D

. : (40)
Xp2(J) Xp(J)
Then (37) is expanded as
(pr—p2)(L— pD)' (L= p2)' ﬁ Lo (o)
pip2 n 1 +8n’ 1 +8n’
o0 [o¢]
XY @i Xy G+ DXy G+ L+8) = biir Xp, (G + D) Xy (G + 1 +i7))
i=0 i'=0
whereap o = bo o = 1 and, from (29), we evaluate
X DX G+ D > YY" i xp (G +Dxp, (+ 1+
=0 4o
o0 (o]
Xoe DX G+ D > YY" bk, (G + D) Xpy (G +1+i7).
=04
Then, using (40), we find
Iimoa logo? = max[0, K (s, n), K@ (s,n) KD (s, n) + K@ (s, n) + A(Mt + j)]
e—+
(41)

KO Mt+j)=Kg' =L =3 "4+ "minfg,, LV] (=12
j'=1 n'
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Figure 6. Two-soliton solution to equation (12)a)y = exp[-1/¢] = 1.0°%; (b) y = +0(¢ —
+0); (c) corresponding time evolution of the BBS.

AMt+j) = LP +012), (moduloM). (42)

This gives a two-soliton solution. We show an example of a two-soliton solution to
equation (12) for finite and the corresponding BBS in figure 6.
The integewﬁl) (1 < j < M) corresponds to the number gpth balls in the larger soliton

att —» —oo, andzﬁ.z) corresponds to that of the smaller soliton at- +oco. Since the order of
balls with the same number (same species) does not change in time evolution, the balls in the
smaller soliton at — +oo must be included in the larger solitonzat> —oo. Therefore the
condition¢® > ¢' must hold for any two-soliton solutions. We should also note that there
are several freedoms to choose the ph&ge in taking the UD limit. However, we conjecture
that the other choices give essentially the same time evolution patterns for the BBS.

N-soliton solutions are obtained in the same way and we only show the results. We take

N
g®) = [ A +v(pi, )¢*(pi, 1) (43)
i=1
where
)=y ) ¢ (p) =¢ LD (VYK e)  (=12....N). (44)

We suppose that

and
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The latter condition is a natural constraint®@fsoliton solutions of the BBS as is the case for
two-soliton solutions. The-soliton solutions are given by

N
1= max] 3K - A | (@5)
woLi=1
Herei = (11, 2, ..., un) (i = 0, 1) and max[- - -] denotes the maximum value among
2N values which are obtained by putting =0 or1fori =1,2,..., N, and
) ) j ) n )
KOMt+j.n)=K§ —LO =368 +> "min[,, L]

’

j'=1
with an arbitrary integek ). In the case
ni=1 for i=iy i ... 0
uni =0 otherwise
the phase factaod (i1; s) is given by

P P
A ) =) (k=DLW +Y " (XW (s +k — 1) — XW(5))
k=1 k=1
whereX (Mt +j) = tLO +3,_ ¢

5. Conclusion

We have investigated CAs which are realized by the movements of balls in an array of an infinite
number of boxes. We showed that the BBSs are obtained by UD of the NDKP equation and that
the spatial dependence of the capacity of each box corresponds to a nonautonomous variable
of the NDKP equation. The explicit expressions of ffiesoliton solutions to the BBSs are
presented with the aid of some peculiar soliton solutions of the NDKP equation.

Although our solutions seem to cover all the soliton solutions to the BBSs, we have not
found the proof yet. We may need another approach which was effective in the case of box
capacity one [18, 19], which is a future problem. In BBSs, there is also another freedom:
capacity of carrier [8]. Extension to the system including this freedom is also another future
problem.
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